НПО Системы Безопасности
(499)340-94-73 График работы:
ПН-ПТ: 10:00-19:00
СБ-ВС: выходной

Главная » Периодика » Безопасность

0123 ... 262

дифференциальная икм

в этой книге мы представляем основные принципы, которые лежат в основе анализа и синтеза систем цифровой связи. Предмет цифровой связи включает в себя передачу ин([)ормации в цифровой форме от источника, который создаёт информацию для одного или многих мест назначения. Особенно важным для анализа и синтеза систем связи являются характеристики физических каналов, через которые передаётся информация. Характеристики канала обычно влияют на синтез базовых составных блоков системы связи. Ниже мы опишем элементы системы связи и их функции.

1.1. ЭЛЕМЕНТЫ СИСТЕМ ЦИФРОВОЙ СВЯЗИ

Функциональную схему и основные элементы цифровой системы связи поясняет рис. 1.1.1. Выход источника может быть либо аналоговым сигналом, как звуковой или видеосигнал, либо цифровым сигналом, как выход печатающей машины, он дискретен во времени и имеет конечное число выходных значении. В системе цифровой связи сообщения, выданные источником, преобразуются в последовательность двоичных символов, В идеале мы можем представить выход источника сообщения небольшим шслом двоичных символов (насколько это возможно). Другими словами, мы ищем эффективное представление выхода источника, которое приводит к источнику с наименьшей избыточностью или с полным её отсутствием. Процесс эффективного преобразования выхода источника - как аналогового, так и ци(1)рового - в последовательность двоичных символов называют кодированием источника ь.чи сжаптем данных.

Последовательность двоичных символов от кодера источника, который мы назовём нсточнигом н- формащи, поступает на кодер канала. Цель кодера канала состоит в том, чтобы ввести управляемым способом некоторую избыточность в информационную двоичную последовательность, которая может использоваться в приёмнике, чтобы преодолеть влияние шума и интерференции, с которой сталкиваются при передачи сигнала через канал. Таким образом, добавленная избыточность служит для увеличения надёжности принятых данных и улучшает верность воспроизведения принятого сигнала. Фактически избыточность в информационной последовательности помогает приёмнику в декодировании переданной информационной последовательности. Например, тривиальной ([)ормой кодирования исходной двоичной последовательности является простое повторение каждого двоичного символа т раз, где т - некоторое целое положительное число. Более сложное (нетривиальное) кодирование сводится к преобразованию блока из к информационных символ в уникальную последовательность из п символов, называемую кодовым слово.м. Значение избыточности, вводимой при кодировании данных таким способом, измеряется отношением п/к. Обратная величина этого отношения, а именно к/п, названа скоростью кода.



ВыходпоП ciiniaji

Источник ни ([юрмицни и входной пре-o6pajoaaTen[.

Кодер источника

Кодер канала

Ци()роиоГ модулятор

Вычадиоп

iipciiGpa-

зова1ель

Декодер

Декодер

UmjjpoBOii

источника

канала

демодулятор


Рис. 1.1.1 Основные элементы цифровой системы связи

Двоичная последовательность на выходе кодера канала поступает на цифровоь мод) штор, который служит интерфейсом к каналу связи. Так как почти все каналы связи, с которыми сталкиваются на практике, способны к передаче электрических сигналов (волновых процессов), основная цель цифрового модулятора сводится к отображению информационной двоичной последовательности в соответствующий сигнал. Чтобы разобраться с этим вопросом, предположим, что кодированная информационная последовательность должна передать один бит за определённое время с постоянной скоростью 7? бит/с. Цифровой модулятор может просто отображать двоичный символ О в сигнал io(0> двоичный символ 1 в сигнал s\{i). Таким способом каждый бит кодера передаётся отдельно. Мы называем это двоичной модуляцией. В качестве альтернативы модулятор может передавать b кодированных информационных битов одновременно, используя различные сигналы 5,(0, /=0, Л/-1, один сигнал для каждого из Л/=2* возможных /Ь-битовых последовательностей. Мы назовём это М-позициопиой модуляцией (i/>2). Заметим, что информационная последовательность с b битами поступает на вход людулятора каждые b R секунд. Следовательно, когда канальная скорость передачи данных R (1)иксирована, для передачи одного из М сигналов, соответствующих информационной последовательности из b бит, отведён в b раз больший интервал времени, чем при двоичной модуляции.

Капал связи-это физическая среда, которая используется для передачи сигнала от передатчика к приёмнику. При беспроволочной связи каналом может быть атмос1)ера (свободное пространство). С другой стороны, телефонные каналы обычно используют ряд физических сред, включая линии проводной связи, волоконно-оптические кабели и беспроволочные линии (например, микроволновую радиолинию). Для любой физической среды, используемой для передачи информации, существенно, что передаваемый сигнал подвержен случашым искажениям через такие механизмы, как возде11ствие аддитивного теплового шума, генерируемого электронными устройствами, воздействие промышленных по.ме.ч (например, автомобильные помехи от системы зажигания), воздействие атмосферных помех (электрические разряды молнии во время грозы) и т.п.

На приёмной стороне системы цифровой связи гщфровой демодулятор обрабатывает искажённый каналом передаваемый сигнал и преобразует его в последовательность чисел, которые представляют оценки переданных данных (двоичных или Л-позиционных). Эта последовательность чисел поступает на канальный декодер, который пытается восстановить первоначальную информацио1шую последовательность, используя знание канального кода и избыточности, содержащейся в принятых данных.

Мера качества работы демодулятора и декодера - это частота, с которой возникают ошибки декодируемой последовательности. Более точно, средняя вероятность ошибки на бит для выходных символов декодера является удобной характеристикой качества



демодулятора-декодера. Вообще говоря, вероятность ошибки является функцией от характеристик кода, форм сигналов, используемых для передачи информации по каналу, мощности передатчика, характеристик канала, а именно уровня шума, природы интерференции и т.д., и методов демодуляции и декодирования. Эти обстоятельства и их влияние на характеристики качества системы связи будут обсуждаться подробно в последующих главах.

На заключительной стадии, когда рассматривается аналоговый выход, декодер источника принимает выходную последовательность от декодера канала и, используя знание метода кодирования источника, применённого на передаче, пытается восстановить исходною форму сигнала источника. Ошибки декодирования и возможные искажения в кодере и декодере источника приводят к тому, что сигнал на выходе декодера источника является аппроксимацией исходного сигнала источника. Разность или некоторая функция разности между исходным и восстановленным сигналом является мерой искажения, внесённого цифровой системой связи.

1.2. КАНАЛЫ СВЯЗИ И ИХ ХАРАКТЕРИСТИКИ

Как было указано в предшествующем обсуждении, канал связи обеспечивает соединение передатчика и приёмника. Физический канал может быть двухпроводной линией, которая пропускает электрический сигнал, или стекловолокном, которое переносит информацию посредством модулированного светового луча, или подводным каналом океана, в котором информация передаётся акустически, или свободным пространством, по которому несущий информационный сигнал излучается при помощи антенны. Другие среды, которые могут характеризоваться как каналы связи - средства хранения данных, такие как магнитная лента, магнитные и оптические диски.

Одна общая проблема при передаче сигнала через любой канал - аддитивный шум. Вообще говоря, аддитивный шум создаётся часто внутри различных электронных компонентов, таких как резисторы и твёрдотельные устройства, используемых в системах связи. Эти шумы часто называют тепловым и/умом. Другие источники шума и интерференции (наложения) могут возникать вне системы, например переходные помехи от других пользователей канала. Когда такой шум и переходные помехи занимают тот же самый диапазон частот, что и полезный сигнал, их влияние может быть минимизировано путем соответствующего выбора передаваемого сигнала и демодулятора в приемнике. Другие виды сигнальных искажений, которые могут встречаться при передаче сигнала по каналу, это затухание сигнала, амплитудные и фазовые искажения сигнала и искажения си1нала, обусловленные многопутевым распространением волн.

Влияние шума может быть уменьшено увеличением мощности передаваемого сигнала. Однако конструктивные и другие практические соображения ограничивают уровень мощности передаваемого сигнала. Другое базовое ограничение - доступная ширина полосы частот канала. Ограничение ширины полосы обычно обусловлено физическими ограничениялш среды и электрических компонентов, используемых в передатчике и приемнике. Эти два обстоятельства приводят к ограничению количества данных, которые могут быть переданы надёжно по любому каналу связи, как мы увидим в последующих главах книги Ниже мы опишем некоторые из важных характеристик отдельных каналов связи.

Проводные каналы. Теле(1)онная сеть экстенсивно использует проводные линии для передачи звукового сигнала, а также данных и видеосигналов. Витые проводные пары и коаксиальный кабель в основном дают электромагнитный канал, который обеспечивает



0123 ... 262


Яндекс.Метрика