НПО Системы Безопасности
(499)340-94-73 График работы:
ПН-ПТ: 10:00-19:00
СБ-ВС: выходной

Главная » Периодика » Безопасность

012345 ... 262

поглощение частот ниже 2 МГц. таким образом ограничивая распространение ионосферной волной радиопередач AM радиовещания. Однако в течение ночных часов электронная концентрация частиц в нижних слоях ионосферы резко падает, и частотное поглощение, которое встречается в дневное время, значительно сокращается. Как следствие, мощные радиовещательные сигналы с AM могут распространяться на большие расстояния посредством отражения от ионосферных слоев (которые располагаются на высоте от 140 до 400 км над поверхностью земли), и земной поверхности.


Рис. 1.2.3. Ил.т1юстрация распространения поверхностной юлной

Часто возникающая проблема при ионосферном распространении электромагнитной волны в частотном диапазоне ВЧ-это миогопутсвость. Многопутёвость образуется потому, что передаваемый сигнал достигает приёмника по многим путям с различными задержками. Это обычно приводит к межсимвольной интерференции в системе цифровой связи. Более того, сигнальные компоненты, прибывающие по различным путям распространения, могут суммироваться таким образом, что это приводит к явлению, названному замирай;гями. Это большинство людей испытало при слушании отдалённой радиостанции ночью, когда ионосферная волна является доминирующим способом распространения. Аддитивный шум в ВЧ диапазоне - это комбинация атмосферных помех и теплового шума. Распространение ионосферной волны прекращается на частотах выше лЗОМГц, что является границей диапазона ВЧ. Однако возможно ионосферно-тропосферное распространение на частотах в диапазоне от 30 до 60 МГц, обусловленное рассеянием сигналов от нижних слоев ионосферы Также можно связаться на расстоянии нескольких сотен миль при помощи тропосферного рассеяния в диапазоне от 40 до 300 МГц. Тропосферное рассеяние обуславливается рассеянием сигнала благодаря частицам в атмосфере на высотах порядка 10 км. Обычно ионосферное и тропосферное рассеяние вызывает большие сигнальные потери и требует большой мощности передатчика и относительно больших размеров антенн.


Рис. 1.2.4. Иллюстрация распространения пространственной юлной

Частоты выше 30 МГц проходят через ионосферу с относительно малыми потерями и делают возможным спутниковую и внеземную связь. Следовательно, на частотах УВЧ диапазона и выше основным способом электромагнитного распространения волн является

2-56



распространение в пределах прямой видимости (ППВ). Для земных систем связи это означает, что передающая и приемная антенны должны быть в прямой видимости с относительно малой преградой (или ее отсутствием). По этой причине передача телевизионных станций в УВЧ и СВЧ диапазонах частот для достижения широкой зоны охвата осуществляется антеннами на высоких опорах.

Вообще, зона охвата для ППВ распространения ограничена кривизной поверхности земли. Если передающая антенна установлена на высоте h м над поверхностью земли, расстояние до радиогоризонта, не принимая во внимание физические преграды, такие как

горы, приблизительно t/ = Vl5/? км. Например, антенна телевидения, установленная на высоте 300 м, обеспечивает покрытие территории приблизительно 67 км. Другой пример -релейные системы микроволновой радиосвязи, экстенсивно используемые для передачи телефонных и видеосигналов на частотах выше чем 1 МГц, имеют антенны, установленные на высоких опорах или сверху на высоких зданиях.

Доминирующий шум, ограничивающий качество системы связи в ВЧ и УВЧ диапазонах, тепловой шум, создаваемый во входных цепях приемника, и космические шумы, уловленные антенной На частотах в диапазоне СВЧ выше чем 10 ГГц при распространения сигнала главную роль играют атмосферные условия. Например, на частоте 10 ГГц затухание меняется приблизительно от 0,003 дБ/км при лёгком дожде до 0,3 дБ/км при тяжёлом дожде. На частоте 100 ГГц затзхание меняется приблизительно от 0,1 дБ/км при легком дожде до 6 дБ/км при тяжёлом дожде. Следовательно, в этом частотном диапазоне тяжелый дождь вызывает чрезвычайно высокие потери при распространении, которые могут приводить к отказу системы обслуживания (полный обрыв в системе связи).

На частотах выше КВЧ (крайне высокие частоты) полосы мы имеем диапазон инфракрасного и видимого излучений - области электромагнитного спектра, который может использоваться для применения ППВ оптической связи в свободном пространстве. До настоящего времени эти диапазоны частот использовались в экспериментальных системах связи типа связи между спутниками.

Подводные акустические каналы. За последние 40 лет исследования океанской деятельности непрерывно расширялись. Это связано с усилением потребности передать данные, собранные датчиками, размещенными под водой и на поверхности океана. Оттуда данные передаются к центру сбора информации.

Электромагнитные волны не распространяются на большие расстояния под водой, за исключением крайне низких частот. Однако передача сигналов таких низких частот предельно дорога из-за чрезвычайно больших и мощных передатчиков. Затухание электромагнитных волн в воде может быть выражено глубиной поверхностного слоя, которая является расстоянием, на котором сигнал ослабляется в е раз. Для морской воды глубина поверхностного слоя 5 - 250/, где / выражена в герцах, а б - в метрах.

Например, для частоты 10 кГц глубина поверхностного слоя 2,5 м. Напротив, акустические сигналы распространяются на расстояния порядка десятков и даже сотен километров.

Подводный акустический канал ведет себя как многопутевой канал благодаря сигнальным отражениям от поверхности и дна моря. Из-за случайного движения волны сигнальные продукты многопутевого (многолучевого) распространения приводят к случайным во времени задержкам распространения и в итоге к замираниям сигнала. Кроме того, имеется частотно-зависимое затухание, которое приблизительно пропорционально квадрату частоты сигнала Глубинная скорость номинально равна приблизительно 1500 м/с, но реальное значение выше или ниже номинального значения в зависимости от глубины, на которой сигнал распространяется.



Окружающий океанский акустический шум вызван креветкой, рыбой и различными млекопитающими. Ближние гавани добавляют к окружающему шуму промышленный шум. Несмотря на эту помеховую окружающую среду, возможно проектировать и выполнять эффективные и безопасные подводные акустические системы связи для передачи цифровых сигналов на большие расстояния.

Системы храпенил информации и системы поиска информации составляют значительную часть систем повседневной обработки данных. Это магнитная лента, включая цифровую наклонно-строчную звукозапись, и видеолента, магнитные диски, используемые для хранения больших количеств данных компьютера, оптические диски, используемые для хранения данных компьютера. Компакт-диски - также пример систем хранения информации, которые могут рассматриваться как каналы связи. Процесс запоминания данных на магнитной ленте или магнитном или оптическом диске эквивалентен передаче сигнала по телефону или радиоканалу. Процесс считывания и сигнальные процессы, используемые в системах хранения, чтобы восстанавливать запасенную информацию, эквивалентен функциям, выполняемым приемником в системе связи для восстановления передаваемой информации.

Аддитивный шум, издаваемый электронными контактами, и интерференция от смежных дорожек обычно представлены в сигнале считывания записанной информации точно так, как это имеет место в системе проводной телефонии или системе радиосвязи. Количество данных, которые можно хранить, ограничено размером диска или ленты и плотностью записи (числом битов, хранящихся на единице площади), которая может быть достигнута электронными системами и головками записи-считывания. Например, плотность упаковки 10 бит на квадратный сантиметр демонстрировалась в экспериментальной системе хранения на магнитном диске. (Текущие коммерческие магнитные изделия хранения достигают значительно меньшей плотности.) Скорость, с которой данные могут быть записаны на диске или ленте, и скорость, с которой информация может считываться, также ограничены механическими и электрическими подсистемами, входящими в систему хранения информации.

Кодирование канала и модуляция - существенные компоненты хорошо разработанной цифровой магнитной или оптической системы хранения. В процессе считывания сигнал демодулируется и его избыточность, введённая кодером канала, используется для исправления ошибок считывания.

1.3. МАТЕМАТИЧЕСКИЕ МОДЕЛИ КАНАЛОВ СВЯЗИ

При синтезе систем связи для передачи информации через физические каналы мы используем математические модели, которые отображают наиболее важные характеристики среды передачи. Затем математическая модель канала используется для синтеза кодера и модулятора в передатчике и демодулятора и декодера в приёмнике. Ниже мы приводим краткое описание моделей каналов, которые часто используются для отображения многих физических каналов, с которыми мы сталкиваемся на практике.

Канал с аддитивным шумом. Самая простая математическая модель для канала связи-это канал с аддитивным шумом, иллюстрируемый на рис. 1.3.1. В этой модели передаваемый сигнал s{t) подвержен воздействию лишь аддитивного шумового процесса «(/). Физически аддитивный шум возникает от посторонних электрических помех, электронных компонентов и усилителей в приёмнике систем связи, а также из-за интерференции сигналов.



012345 ... 262


Яндекс.Метрика